
LUZIUS MEISSER AT THE WORLD CONGRESS OF MICROSIMULATION



Background

• MSc Computer Science
• Years of Java programming experience as the CTO 

of startup
• MA in Economics
• Currently pursuing a PhD on “Agent-based financial 

economics” with Prof. Thorsten Hens (evolutionary 
finance, heuristics)

• Will be teaching a course on “Agent-based financial 
economics” at University in Zurich next semester



The Code is the Model

Inspired by agile software engineering. 
Consequences:

1. The code is the specification
2. Improved replicability
3. Programming skills gain importance
4. Models can be built like software
5. Better modularity, management of complexity
6. Peer-reviews should include replication and code 

inspections
7. Better quality models



The Agile Manifesto



Cost of Change

Traditional view: ”An error in 
the design stage costs ten times 
more to correct in the coding 
stage and a hundred times 
more to fix after the program is 
in use.” – Page and Miller 
(2007)

How does a decrease in the cost 
of change affect the returns on 
upfront design?



Cost of Change The agile view:
“The only way we validate a 
software design is by 
building it and testing it. 
There is no silver bullet, and 
no ’right way’ to do design. 
Sometimes an hour, a day, 
or even a week spent 
thinking about a problem 
can make a big difference 
when the coding actually 
starts. Other times, 5 
minutes of testing will 
reveal something you never 
would have thought about 
no matter how long you 
tried. We do the best we 
can under the 
circumstances, and then 
refine it.” – Reeves (2005)



Modeling Process: traditional

The ”waterfall” model of software 
development.

Despite not being very realistic, this is how 
agent-based modeling is often implicitly 
assumed to work.

There is no indication on how to handle 
errors or how to refine the original idea 
except by starting from scratch.

Idea

Specification

Code

Program

Result Paper

Include

Include

Other 
inputs

Formulate

Implement

Compile

Run



Ideas

Code

Program

Raw results

Paper

Other 
inputs

Fo
rm

ul
at

e

Compile

Run

Charts, 
statistics

Really nice 
results

Select

Prepare

Notes, match, 
diagrams, etc. Trash

Discard

Syntax errors

Low-level 
semantic 

errors

High-level 
semantic 

errors and 
insights

Fix

Backlog

Include

Postpone

Continuous inflow

Contemplate

Refine

Refine

Review,
Refactor

Reconsider



Model Specification: Text + Math

• Most common approach
• Well-suited for small, simple models, e.g. 

Schelling’s segregation model
• Problematic with larger models



Model Specification:
The ODD Protocol

"Once readers know the full set of (low-level) state variables, they have a 
clear idea of the model’s structure and resolution." - Grimm et al (2006)

The Model The model’s ODD specification



Model Specification: Pseudo-Code
Common in computer science.
Suitable for short algorithms up to 25 lines.



Model Specification: Source Code

Agent-based models are fundamentally algorithmic and often of non-
trivial size. Also, they can be very sensitive to small changes, so providing 
incomplete specifications is not an option. The cleanest way to specify 
agent-based models is to use source code.

All other artifacts, such as flow charts, UML diagrams, natural language 
descriptions, ODD tables, and mathematical equations can be suitable 
means to describe the model at a higher level, but not to fully specify it. 
If an interested reader wants to know about the complete model in all its 
details, she should consult the source code, with the paper serving as a 
guide.

"In software development, the design document is a source code listing.”
- Reeves (2005)



Replicability

• Replicability is the ability to repeat an experiment and to get the 
same results

• Replication is the foundation of empirical science
• In agent-based modeling, running the simulation is the 

experiment
• Seeing the code as the specification eliminates the error-prone 

translation step, thereby improving replicability.
• Replicating agent-based models can “simply” be done by 

compiling and running them.
Chang and Phillip [2015] try to reproduce the results of 67 economics papers published in a selection of 13 
reputable journals. They could only replicate 33% of them on their own, and an additional 10% with the 
authors’ assistance. The primary reason for a failure to replicate results was missing software or data – 
even for journals that in theory have a policy of requiring source code and data. 

Verifying a model’s description and the presented interpretation of the results is also important, but not 
part of replication. (Müller et al. [2014] disagree: "although the provision of source code technically 
facilitates model replication, it may circumvent the consistency check between the conceptual model and 
its implementation (one purpose of model replication) by encouraging “replicators” to simply copy the 
source code.”)



What is replication?

Should replication of a flawed experiment include 
these flaws?
Example: Dr. Zoidberg measures whether an apple 
or an orange fall faster. To do so, he lets both fruits 
fall at the same time and lets Fry time the apple and 
Leela time the orange. He writes a scientific paper 
reporting that oranges fall faster.
(But actually, he just measured that Leela reacts 
faster than Fry.)

Should someone replicating this experiment:
• Use the same flawed method?
• Use a correct method?



Replicability Checklist Part 1 of 2

1. Your paper must contain a high-level description of the model. 
2. Your paper must link to the model’s source code. Preferrably, 

the code is hosted in a browsable web repository such as 
github.com. 

3. Along with the link to the code, the fingerprints (hash) of the 
discussed versions should be provided. This proves that the code 
was not changed after the submission of the paper. 

4. Your code must include a readme file with instructions on how 
to compile and run the simulation. This should include the 
program inputs and the expected outputs for each discussed 
result. 

5. Your simulation should be deterministic. Running the same 
configuration twice should yield the exact same result.



Replicability Checklist Part 2 of 2
6. You should specify under which conditions the code can be reused, for 

example under the MIT license (MIT [1988]). Academic use under the 
condition of proper attribution must be permitted. 

7. You should encourage others to clone your model into their own 
repositories in order to improve long-term availability. Prominently 
add the title of your paper to the readme file so the repository can be 
found with a web search even when the original links are broken. 

8. The tools and libraries required to compile and run the software 
should be freely available for academic use. For example, Jupyter 
notebooks should be preferred over Mathemica notebooks.

9. You are encouraged to cross-reference the paper from the code and 
vice versa. In particular, you should make clear how the variable 
names from the paper (usually single-lettered) map to the ones in the 
code (should be long and descriptive). 

10. Keep your model simple and accessible by following the software 
design hints from the paper.



Consequences for Publishing

• Papers should follow a replicability checklist.
• Papers present the gained insights and serve as a guide 

to the source code, but do not contain a full 
specification.

• Code should be fingerprinted and provided in a public, 
browseable repository.

• Only readers interested in the details of the model 
should have to inspect the source code.

• The peer review should include a replication check. If 
replication is not possible with reasonable effort, the 
paper can be rejected.

• Ideally, the reviewers also scrutinize the source code.



Github



Impact on Model Quality

Towards a new generation of higher quality models:
• Agile software engineering puts the code at center stage. As 

more attention is paid to it, its quality increases.
• Focus on continuous, incremental improvements.
• High code quality is part of the model’s quality (simplicity, 

conciseness, etc.)
• Better replicability, which also is part of a model’s quality.
• Code reviews can increase code & model quality further. 

(Proven, measurable effect.)
• Inventives: The more attention code receives, the higher the 

incentive of the author to deliver high quality. 



Questions?

Paper available at meissereconomics.com
Contact: luzius@meissereconomics.com


