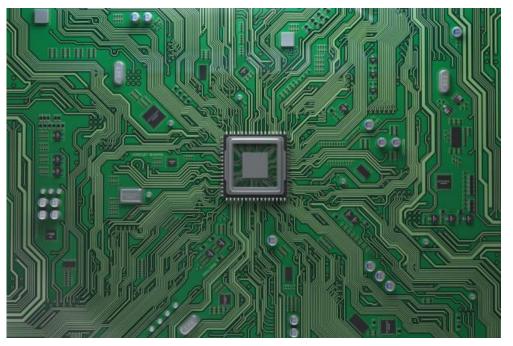


Agent-based Financial Economics Lesson 2: Programming

Luzius Meisser, Prof. Thorsten Hens


luzius@meissereconomics.com

"What I cannot create, I do not understand."

- Richard Feynman

Today

- Ensure you are all setup
- Computer architecture
- Interpreted vs. compiled languages
- Functions and Objects
- Our setup
- Sequence economy
- Golden ratio search
- Preparation of exercise 1: the hermit

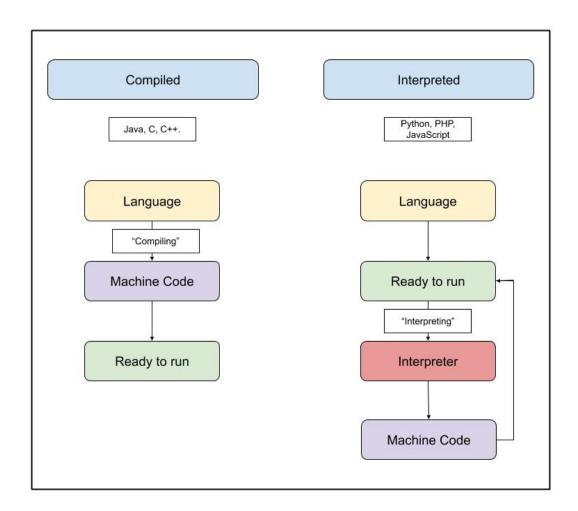
A chip on an electronic circuit.

Setup

Software:

- Java SDK (Software Development Kit) <u>https://adoptopenjdk.net/?variant=openjdk13</u>
- Github Desktop
 <u>https://desktop.github.com</u>
- Eclipse for Java Developers <u>https://www.eclipse.org/downloads/</u>

Repositories


Computer Architecture

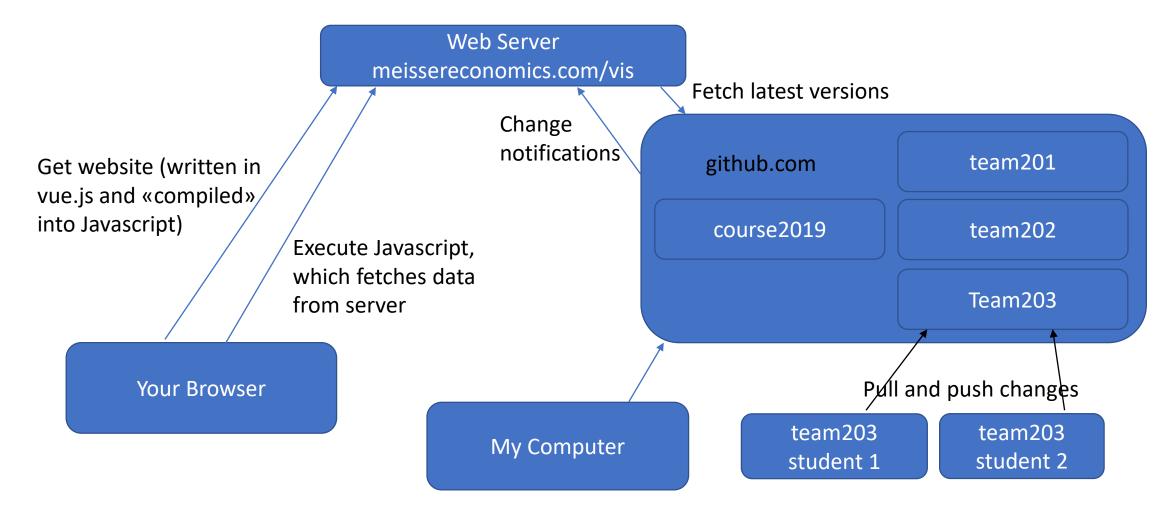
- Processor
- RAM: fast (nanoseconds), volatile, typically a few gigabyte
- Disk: slow (milliseconds), large, but persistent, hundreds of gigabytes
- →Running a simulation that does not fit into RAM is unbearably slow.
- \rightarrow My computer has 96 GB \odot

Computer Instructions

- Compiled languages convert source code (made for humans) into bytecode (made for computers).
- Compiled languages are usually faster, as the compiler can do many optimizations an interpreted can't.

Garbage Collection

High-level languages cleanup the memory automatically for you. Disadvantages: less efficient, sometimes everything pauses for a fraction of a second Examples: Java, Python, c#, etc.


Low-level languages have explicit memory management. If done carefully, this is more efficient and better suited for real-time applications. If not, this leads to «memory leaks». Examples: C, C++

 \rightarrow Try to avoid languages without garbage collection

Functions and Classes

• See sample classes

Setup

Webserver

Ranking

Rank	Consumer	Utility	Source	Version	
1	team206-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	Currently ranked with an
2	team204-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	exponential moving average at the end of the simulation.
3	team205-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	Factor: 0.98
4	team210-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	
5	team208-Hermit	4.164133234547787	source	meisser on 2019-09-26T13:18:13Z	
6	team201-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	
7	team202-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	
8	team203-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	
9	team207-Hermit	4.164133234547787	source	Luzius Meisser on 2019-09-26T13:17:41Z	

Which offer would you prefer?

A. a payment of \$3400 this month

B. a payment of \$3800 next month

Which offer would you prefer?

Table 2: Percentage of participants choosing the "wait" option

Result from asking 6912 economics students from around the world.

9/30/2019

Country	Choose to wait	Country	Choose to wait	Country	Choose to wait
Germany	.89	Lebanon	.71	Romania	.57
Belgium	.87	UK	.71	Luxembourg	.55
Switzerland	.87	Slovenia	.71	Moldova	.54
Netherlands	.85	Ireland	.69	Angola	.53
Norway	.85	Taiwan	.69	Vietnam	.52
Finland	.85	USA	.68	Australia	.51
Sweden	.84	France	.65	Azerbaijan	.48
Denmark	.84	Turkey	.64	Spain	.47
Czech Rep	.80	Argentina	.64	Greece	.47
Hong Kong	.79	China	.62	New Zealand	.45
Canada	.79	Colombia	.62	Italy	.44
Poland	.78	Malaysia	.62	Bosnia.Her	.39
Austria	.78	Portugal	.60	Russia	.39
Israel	.78	Lithuania	.60	Chile	.37
Estonia	.78	India	.59	Georgia	.26
Hungary	.77	Mexico	.58	Tanzania	.23
Japan	.74	Croatia	.58	Nigeria	.08
South Korea	.72	Thailand	.57		

13

Why discount the future?

- You might not live any more tomorrow
- You might change over time
- Your preferences might change
- You are greedy
- You need the money now
- Culture
- Reliable environment (compare the marshmallow test)
- Inflation
- Interest / opportunity costs

→ Interesting question: can a population of agents with high discounting individually form an organization with low discounting overall?

Endogenously enforcing discounting

When taking decisions, consumer agents should maximize discounted life-time utility:

$$U = \sum_{t=0}^{\infty} \beta^t u_t$$

But what justifies the discounting? Can we somehow make the discounting endogenous? Yes, by declaring that β is the probability of survival. Defining T as the last day the agent is alive, the agent then maximizes expected life-time utility:

$$E[U] = E[\sum_{t=0}^{T} u_t] = \sum_{t=0}^{\infty} \delta^t u_t$$

What is a good metric to rank agents?

- Achieved life-time utility?
- \rightarrow Unfair with idiosyncratic, probabilistic death

Example: agent A achieves u=5 per day and lives 100 days, agent B achieves the same, but lives 150 days.

U(A) = 500

U(B) = 750

But was agent B really better?

What is a good metric to rank agents?

- Achieved life-time utility?

 \rightarrow Unfair with idiosyncratic, probabilistic death

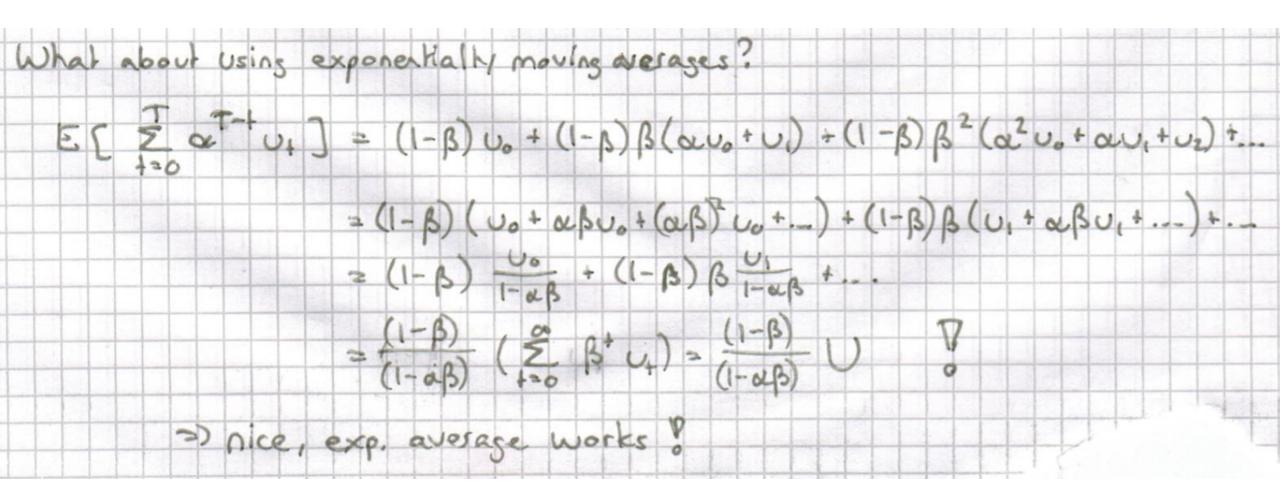
- Average life-time utility?

No, does not maximize the same.

$$E\left[\frac{1}{T}\sum_{t=0}^{T}u_t\right] = p(T=0)u_0 + p(T=1)\frac{u_1 + u_2}{2} + p(T=2)\frac{u_1 + u_2 + u_3}{3} + \dots$$

$$= (1-\delta)u_0 + \delta(1-\delta)\frac{u_1 + u_2}{2} + \delta^2(1-\delta)\frac{u_1 + u_2 + u_3}{3} + \dots$$

 $= (1-\delta)(u_0 + \frac{\delta u_0}{2} + \delta^2 \frac{u_0}{3} + \dots) + \delta(1-\delta)(\frac{u_1}{2} + \delta \frac{u_1}{3} + \delta^2 \frac{u_1}{4} + \dots)$


What is a good metric to rank agents?

- Achieved life-time utility?
- \rightarrow Unfair with idiosyncratic, probabilistic death
- Average life-time utility?
- \rightarrow Wrong, does not maximize the same
- Utility experience on last day?
- \rightarrow Theoretically yes!

$$E[U_T] = p(T=0)u_0 + p(T=1)u_1 + p(T=2)u_2 + \dots$$

= $(1-\delta)u_0 + \delta(1-\delta)u_1 + \delta^2(1-\delta)u_2 + \dots$ = $(1-\delta)\sum_{t=0}^{\infty} \delta^t u_t$

What is a good metric to rank agents?

- Achieved life-time utility?
- \rightarrow Unfair with idiosyncratic, probabilistic death
- Average life-time utility?
- \rightarrow Wrong, does not maximize the same
- Utility experience on last day?
- \rightarrow Theoretically yes! But quite random.
- What about an exponential average?
- \rightarrow Yes, even when memory factor differs from discount rate!

Exerice 1: The Hermit

- Try to run the agent locally
- Push some changes
- Don't push code with errors!

Demo

- How to run the whole simulation on your computer (excluding the agents of the other teams)
- Only way to compete against the other teams is to upload your agents
- Everything else including the web server can be run locally