
Agent -based Financial Economics
Lesson 1: The Hermit

Luzius Meisser, Prof. Thorsten Hens

luzius@meissereconomics.com

ñWhat I cannot create, I do not understand.ò

- Richard Feynman

9/20/2018 Agent-based Financial Economics - HS17 2

About this course

ÅAll information on http://course.meissereconomics.com

ÅEvery Friday from 14:00 to 16:00 at KOL-F-123
Ą To do: define when to do the breaks

Å14 Lessons, last two for presentations

ÅWe will form teams of two during the break

ÅUnique setup with custom-made software

ÅModelling ideas borrowed from ñEconomic Foundations of
Financeò by Thorsten Hens and Helga Fehr-Duda, 6 ECTS

9/20/2018 Agent-based Financial Economics - HS17 3

http://course.meissereconomics.com/

Typical lesson structure

ÅDiscussing last weekôs exercise

ÅFamous models

ÅTheory, methodological background, maths

ÅExtending our model, what do we expect?

ÅNext exercise, see what actually happens

9/20/2018 Agent-based Financial Economics - HS17 4

Structure Today

ÅAbout this course

ÅTheory: Chaos and complexity

ÅFamous model: Shellings segregation game

ÅBreak: forming of teams

ÅEconomic basics: utility and production

ÅSoftware engineering: OO, Java, Eclipse, Git

ÅGeneral setup and first exercise

9/20/2018 Agent-based Financial Economics - HS17 5

About me

ÅStudied Computer Science at ETH, 2006

ÅCo-founded and sold secure cloud storage startup

ÅBoard member of Bitcoin Association Switzerland

ÅTeached object-oriented programming at FHNW

ÅStudied Economics at UZH, 2016

ÅCurrently pursuing a PhD on ñAgent-based financial economicsò

ÅFounded Meisser Economics AG for my research.

ÅI believe that there is a huge untapped potential of software
engineering in economics and finance.

9/20/2018 Agent-based Financial Economics - HS17 6

Philosophy

ÅAgent-based vs equation-based

ÅLocal vs global decisions

ÅInvisible hand vs central planning

ÅDecentralized vs holistic

ÅObject-oriented vs data-driven

ÅGraph vs matrix

ÅModular vs monolithic

ÅDivide et impera vs aggregation

You can always look at a coin from two sides. Nonetheless, it keeps being a coin.

9/20/2018 Agent-based Financial Economics - HS17 7

9/20/2018 Agent-based Financial Economics - HS17 8

Chaos and Complexity

Classic example: discrete logistic growth.

9/20/2018 Agent-based Financial Economics - HS17 9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

Logistic growth with k=1.5, x0 = 0.01

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Equlibriumat crossing point

Chaos and Complexity

Simple systems can exhibit chaotic behavior.

9/20/2018 Agent-based Financial Economics - HS17 10

Classic example: discrete logistic growth

For a model in which prices behave like
this, see: Cars Hommes, «Behavioral
Rationality and Heterogenous Expectations
in Complex Economic Systems», page 14

Chaos and Complexity

9/20/2018 Agent-based Financial Economics - HS17 11

Classic example: logistic map

See also: Cars Hommes, «Behavioral
Rationality and Heterogenous Expectations in
Complex Economic Systems», page 14

Ą Systems get chaotic very quickly. In chaotic
systems, small arbitrary assumptions or errors
can make a big difference.
Ą Results are worthless without having a
stable, known case as an anchor point.

Chaos and Complexity

9/20/2018 Agent-based Financial Economics - HS17 12

The magnetic pendulum: classic
example of a continuous system that
exhibits complexity.

Multiple equilibria, practically
impossibleto tell at whichoneit will
end up.

ĄToavoidchaos, we shouldprefer
systemsin whichsmallerrorsarenot
allowedto addup.

Shellings Segregation Game

ÅVery simple model, people move and slightly prefer to be
among themselves

ÅSmall bias leads to strong segregation over time

ÅChaos: small differences in initial conditions can lead to
completely different outcome

ÅEconomically, segregation is optimal, as it maximizes utility.
Economists take preferences as given, do not judge. (Maybe
they should.)

ĄSingapore mandates racial mixture of tenants in each block

ĄSan Francisco randomly assigns children to schools across
town (potentially leading to large travel times)

Generally: be careful with political (or any other)
interpretations. Your results might be an artifact of a
programming error, some overlooked detail, or an invalid
assumption.

Online to play with: ncase.me/polygons/

https://ncase.me/polygons/

Break

Forming of teams.

9/20/2018 Agent-based Financial Economics - HS17 14

Our Toy Economy: Basic Setting

ÅClassic sequence economy with production

ÅConsumers with utility functions and endowments, trade to
maximize discounted lifetime utility

ÅPrice-taking firms with production functions,
trade to maximize discounted lifetime profits

ÅOn each day, a pareto-efficient equilibrium must exist (first
theorem of welfare economics) and is reachable through trading

ÅNot clear how to reach it in general (almost ñNP hardò)

9/20/2018 Agent-based Financial Economics - HS17 15

Exercise 1: The Hermit
ÅNo trade, lives on his own

ÅHas to find optimal work-life balance that maximizes utility

ÅDeadline: next Thursday 24:00

ÅI will unlock your accounts tonight and notify you by e-mail

Ą See ex1.meissereconomics.com

9/20/2018 Agent-based Financial Economics - HS17 16

The Mathematical View

9/20/2018 Agent-based Financial Economics - HS17 17

Ą Trivial for the economists among you.

Many ways to solve this

ÅExogenous trial and error

ÅCalculate optimum and hardcode result

ÅCalculate analytical solution and calculate optimum dynamically from
the current parameters

ÅEndogenous trial and error

ÅGolden ratio search

ÅñSteepest descentò

ÅOwn ideas?

Feel free to do what you feel most comfortable with, but document it!

9/20/2018 Agent-based Financial Economics - HS17 18

Heuristic
What is a heuristic?

A heuristic is a simple recipe to solve a problem well
enough.

Example: 1/n heuristic in investing.

Example: if you donôt want to evaluate all the yoghurts
at Coop, just buy the same as you bought the last time.

Example: Ant routes.

Related: ñgreedy algorithmsò in computer science.

A good heuristic allows an agent to behave successfully
(or even optimally) without spending much resources on
solving the underlying problem, at least most of the
time.

Gerd Gigerenzer is the ñheuristics popeò.

9/20/2018 Agent-based Financial Economics - HS17 19

Choice of Tools

ÅProgramming language: Java

ÅCode editor: Eclipse

ÅVersion control: Git, Github.com, SourceTree

ÅDocumentation: Markdown

Follow the instruction on

http://meissereconomics.com/course/setup

to install all of the above.

9/20/2018 Agent-based Financial Economics - HS17 20

http://meissereconomics.com/course/setup

Object-Oriented Programming

ÅThe most popular way of organizing software

ÅWell-suited to structure complex systems

ÅObjects encapsulate concerns, hide complexity

ÅThe definition of what an object does is called ñclassò (cookie form)

ÅInstances of a class are called ñobjectsò (cookie)

ÅClasses have two kinds of members: variables and functions

(sometimes also called field and method)

ÅThese members might or might not be visible to other classes

Ą Particularly well-suited for articulating agent-based models

9/20/2018 Agent-based Financial Economics - HS17 21

Class (object definition)

Objects (instances of
a class)

Java

9/20/2018 Agent-based Financial Economics - HS17 22

- Most popular programming language by far. Most popular also for agent-based economics.
- Almost as fast as C/C++, but much fewer ways to shoot your own foot.
- Python is also popular among scientists, but about 10 times slower.
- Good to have on your CV!

Popularity Speed

9/20/2018 Agent-based Financial Economics - HS17 23

- Created by consortium about IBM as a strategic move against Sun Microsystems ςhence the name
- Architect is software engineering heavyweight Erich Gamma who lives in Zurich, currently working for Microsoft.
- Invaluable programming tool, supports the programmer in many way. But not very intuitive at first.

ăComment

ă Class declaration. Hermit inherits functionality from the
Consumer class. The Hermit also implements the Ifounder
interface, allowing him to obtain a production function in
our simulation even though he does not found a firm (yet).

There is a private double-precision number that is initially set to 0.2.
Private means that no other class can access this variable.

There is a field prodFunƻŦ ǘȅǇŜ άIProductionFunctionέ ǿƘƛŎƘ ŀƭƭƻǿǎ ǘƘŜ IŜǊƳƛǘ ǘƻ
remember his production function. In the beginning, it is empty (null).

The class is public, so anyone can use it.

The constructor is a special function that is invoked whenever a new Hermit is being instantiated.
Unlike other functions, it has no return value.

This constructor does nothing except passing on its parameters to the parent (super) class Consumer,
which needs them.

Hold Ctrl and click άǎǳǇŜǊέ ƻǊ ά/ƻƴǎǳƳŜǊέ ŦǳǊǘƘŜǊ ŀōƻǾŜ ǘƻ ŘƛǊŜŎǘƭȅ ƧǳƳǇ ǘƻ ǘƘŜ /ƻƴǎǳƳŜǊ ŎƭŀǎǎΦ
This is the single most important key shortcut to remember!

I programmed the simulation to ask all
IFounderswhether they want to found a firm
every day. The Hermit uses this as a hack to
obtain access to a productivity function.

If you do not know what functionality an object
offers, enter its name followed by a dot and hit
άctrl-spaceέΦ Ą Instant documentation!

The simulation invokes the
άtradeGoodsέ ŦǳƴŎǘƛƻƴ ƻƴ ŜǾŜǊȅ
consumer every day. However, the
Hermit being a hermit does not trade.
Instead, he produces his own potatoes
feeding his previously obtained
production function with some of his
24 man-hours.

CƛƴŀƭƭȅΣ ǘƘŜǊŜ ƛǎ ŀ άƳŀƛƴέ ƳŜǘƘƻŘΦ /ƭŀǎǎŜǎ ǘƘŀǘ ƘŀǾŜ ŀ Ƴŀƛƴ ƳŜǘƘƻŘ Ŏŀƴ ōŜ ǊǳƴΦ
¢ƘŜ Ƴŀƛƴ ƳŜǘƘƻŘ ƛǎ άǎǘŀǘƛŎέΣ ƳŜŀƴƛƴƎ ǘƘŀǘ ƛǘ ŜȄƛǎǘǎ ƛƴŘŜǇŜƴŘŜƴǘƭȅ ƻŦ ŀƴȅ ǎǇŜŎƛŦƛŎ IŜǊƳƛǘ ƛƴǎǘŀƴŎŜΦ
¢ƻ Ǌǳƴ ǘƘŜ άƳŀƛƴέ ƳŜǘƘƻŘΣ right-ŎƭƛŎƪ ŀƴŘ ǎŜƭŜŎǘ άǊǳƴ ŀǎέ άWŀǾŀ !ǇǇƭƛŎŀǘƛƻƴέΦ

Ą Live demo including short tour through the debugger.

