‘5’&?{/‘& . .
31 ) University of
C J Zurich

Agent -based Financial Economics
Lesson 1: The Hermit

Luzius Meisser, Prof. Thorsten Hens
luzius@meissereconomics.com

n Wh at I cannot creat e, I d c
- Richard Feynman






About this course

AAIl information on http://course.meissereconomics.com

AEvery Friday from 14:00 to 16:00 at KOL-F-123
A To do: define when to do the breaks

Al4 Lessons, last two for presentations
AWe will form teams of two during the break
AUnigue setup with custom-made software

AModellingi deas borrowed from AEconon
Financeo by Thor st e nDutthe6l E€TSand H



http://course.meissereconomics.com/

Typical lesson structure

ADi scussing | ast week©os
AFamous models

ATheory, methodological background, maths
AExtending our model, what do we expect?
ANext exercise, see what actually happens

exercil se



Structure Today

AAbout this course

ATheory: Chaos and complexity

AFamous model: Shellings segregation game
ABreak: forming of teams

AEconomic basics: utility and production
ASoftware engineering: OO, Java, Eclipse, Git
AGeneral setup and first exercise



About me

AStudied Computer Science at ETH, 2006
ACo-founded and sold secure cloud storage startup
ABoard member of Bitcoin Association Switzerland
ATeached object-oriented programming at FHNW
AStudied Economics at UZH, 2016
ACurrently pursuidh@asadPHiDnamci Ad
AFounded Meisser Economics AG for my research.

Al believe that there is a huge untapped potential of software
engineering in economics and finance.

9/20/2018 Agentbased Financial EconomicdS17 6



Philosophy

A Agent-based vs equation-based , , ,
Undirected Graph & Adjacency Matrix

A Local vs global decisions 000606 6
A Invisible hand vs central planning g S B L I B
1 OO0 |1 0] 0
A Decentralized vs holistic ©1 ool 1ol0
A Object-oriented vs data-driven @of1[1]o]1]0
A Graph vs matrix ®ojojo|1]o]"
o @®ojfofofof1]o0

A Modular vs monolithic

Undirected Graph Adjacency Matrix

A Divide et impera vs aggregation

You can always look at a coin from two sides. Nonetheless, it keeps being a coin.

9/20/2018 Agentbased Financial EconomicdS17



DISCONNECTION

T00LS OF A SYSTETT THINKER

v

—

INTERCONNECTEDNESS LINEAR CIRCULOR SIL0S EMERGENCE
(3 2] o
* A
e |
PARTS WHOLLS (INALYSIS SUNTHESIS [SOLATION RELATIONSHIDS




Chaos and Complexity

Classic example: discrete logistic growth. @1 =ra; (1 —xy)

Logistic growth with k=1.5, x0 = 0.01 Equlibriumat crossing point
0.35 05
e ® 000 00

([ 0.45

0.3 [ ]
([ 0.4
0.25 ® 0.35
0.2 L 0.3
0.25

[ J
0.15 0.2
[ J
0.15
0.1 PY
(] 0.1
0.05 . ° 005
P [ J
0® 0
0 5 10 15 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

9/20/2018 Agentbased Financial EconomicdS17



Chaos and Complexity

Simple systems can exhibit chaotic behavior.

Classic example: discrete logistic growth Equillbrium, & - 2.0 2-point cycle, & = 3.2
1 1
' 0.8 0.8 4
Ilil-_l_l - TIFI- [1 — Ilil-} § 0.6 - g 0.6
2 041 o 04
~ 02 ~ 024
0 T T T 0 T T T 1
For a model in which prices behave like ° o E W W ’ P ale e YT
this, see: Cars Hommes, «Behavioral o o o e s s
-point cyCie, a S a0s5, 8

Rationality and Heterogenous Expectations , |

in Complex Economic Systems», page 14 > 22 *R > :Z )}
g, 0.4 4 .Eg);x 0.4 4
= 02 4 Sl
0 T T T 0 T T T
0 10 20 30 40 0 10 20 30 40
Generation Generaton |

9/20/2018 Agentbased Financial EconomicdS17 10



Chaos and Complexity

. . 1.0

Classic example: logistic map i

Lyl — T |L]_ — :T.'Itl-} s
See also: Cars Hommes, «Behavioral 0.6 -
Rationality and Heterogenous Expectations in e
Complex Economic Systems», page 14 il
A Systems get chaotic very quickly. In chaotic e
systems, small arbitrary assumptions or errors o
can make a big difference. 0.0 L [ T I B
A Results are worthless without having a 1B T T S B e T
stable, known case as an anchor point. r

9/20/2018 Agentbased Financial EconomicdS17 11



Chaos and Complexity

The magnetic pendulum: classic
example of a continuous system that
exhibits complexity.

Multiple equilibrig practically
Impossibleto tell at whichoneit will
endup.

A Toavoidchaoswe shouldprefer
systeman whichsmallerrorsare not
allowedto addup.



Shellings Segregation Game

A Very simple model, people move and slightly prefer to be
among themselves

A Small bias leads to strong segregation over time

A Chaos: small differences in initial conditions can lead to
completely different outcome

A Economicall¥, segregation is optimal, as it maximizes utilit%
Economists take preferences as given, do not judge. (Maybe
they should.)

A Singapore mandates racial mixture of tenants in each block

A San Francisco randomly assigns children to schools across vy o ,,
town (potentially leading to large travel times) e v

Generally: be careful with political (or any other) o3 ' |
interpretations. Your results might be an artifact of a oy 9 éf,

programming error, some overlooked detail, or an invalid e
assumption. i

Online to play with: ncase.me/polygons/ e £



https://ncase.me/polygons/

Break

Forming of teams.



Our Toy Economy: Basic Setting

AClassic sequence economy with production

AConsumers with utility functions and endowments, trade to
maximize discounted lifetime utility

APrice-taking firms with production functions,
trade to maximize discounted lifetime profits

AOn each day, a pareto-efficient equilibrium must exist (first
theorem of welfare economics) and is reachable through trading

ANot cl ear how to reach it in ge



Exercise 1: The Hermit

A No trade, lives on his own

A Has to find optimal work-life balance that maximizes utility
A Deadline: next Thursday 24:00

A 1 will unlock your accounts tonight and notify you by e-mail
A See exl.meissereconomics.com



The Mathematical View

U (} Lieisures L patatoes) — Iﬂg (h.!ei sure) + IDQ (33 potatoes }

Thus, the hermit enjoys eating potatoes and spending man-hours as leisure time equally. In order to maximize utility, he
needs to decide how much of his 24 hours to spend on leisure time and how much on growing potatoes according to the

following budget constraint:

hleisure + hwork =24

The hours spent working are turned into potatoes via a Cobb-Douglas production function with fixed costs, with z;4,4 = 100
being constant:

— 0.6 ,..0.2
xpﬂtataes(miandﬂ hwﬂrk) - (h’wm‘k o 6) Lland

The fixed costs of six hours represent the daily amount of work needed before actual production can start, for example for
maintaining the required infrastructure. Plugging the production function and the budget constraint into the utility function,
this leads to the following simplified maximization problem:

max U(hwﬂrk) = 309(24 - hwork) + Eog((hwgrk —6 ﬂIBx?&?ﬂ.d)

A Trivial for the economists among you.

9/20/2018 Agentbased Financial EconomicdS17

17



Many ways to solve this

AExogenous trial and error
ACalculate optimum and hardcode result

ACalculate analytical solution and calculate optimum dynamically from
the current parameters

AEndogenous trial and error

AGolden ratio search

A St eepest descent 0
AOwn ideas?

Feel free to do what you feel most comfortable with, but document it!



Heuristic SIMPLE

HEURISTICS

What is a heuristic?

THAT MAKE Us
A heuristic is a simple recipe to solve a problem well SMART
enough.
Example: 1/n heuristic in investing.
Exampl e: i f you donodot want
at Coop, just buy the same as you bought the last time. GERD GIGERENZER, PETER M. Tobp,
Example Ant routes AND THE ABC RESEARCH GROUP
Rel at ed: Nngreedy algorithmso 1 n

A good heuristic allows an agent to behave successfully
(or even optimally) without spending much resources on
?olvmg the underlying problem, at least most of the

ime

Gerd Gigerenzeri s t he Aheuristics popeo

3 o
start @

9/20/2018 Agentbased Financial EconomicdS17 19



Choice of Tools

AProgramming language: Java
ACode editor: Eclipse
AVersion control: Git, Github.com, SourceTree

ADocumentation: Markdown

Follow the instruction on
http://meissereconomics.com/course/setup
to install all of the above.

9/20/2018 Agentbased Financial EconomicdS17

20


http://meissereconomics.com/course/setup

Object-Oriented Programming

A The most popular way of organizing software

A Well-suited to structure complex systems

A Objects encapsulate concerns, hide complexity

AThe definition of what an object

Alnstances of a class are called

A Classes have two kinds of members: variables and functions
(sometimes also called field and method)

A These members might or might not be visible to other classes

A Particularly well-suited for articulating agent-based models

s cal

huw] evie SO0 (c
Class (object definition)

—

>

R

Objects (instances of
a class)



Java

Most popular programming language by far. Most popular also for agas¢d economics.
Almost as fast as C/C++, but much fewer ways to shoot your own foot.

Python is also popular among scientists, but about 10 times slower.

Good to have on your CV!

Sep 2017 Change Programming Language Ratings
10000
1 Java 12.687%
2 C 7.382% 1406 1830
916 gg, 1108

3 C+t 5 565% 00 i

) 29 350 360 HCH
4 c# 4.779% £ 176 -

; 5 117 Java
5 Python 2.983% s 100 —— 80 ———— 65 - MATLAB

&

2 37 & Julia Vec
6 PHP 2.210% s 27 _

S 13 “Julia loops
i w JavaScript 2.M7% 10 4 7| | ‘ Python

) . . 4 Octave
8 Visual Basic NET 1.982%
9 Perl 1.952%
4 4 ‘ : ‘
10 Ru DY 1.933% 100,000 250,000 500,000
Total cell number

Popularity Speed

9/20/2018 Agentbased Financial EconomicdS17 22



= eclipse

- Created by consortium about IBM as a strategic move against Sun Microsyshemse the name
- Architect is software engineering heavyweight Erich Gamma who lives in Zurich, currently working for Microsoft.
- Invaluable programming tool, supports the programmer in many way. But not very intuitive at first.

& workspace-course - Exercises/src/com/agentecon/exercisel /Hermit.java - Eclipse - m} x

File Edit Source Refactor Mavigate Search Project Bun  Window Help

M HEL @i %0 U H G- SS S P A RED Y C O D [aukacs]l] 5 | @4
[# Packag.. % Type Hi. = B | [ Hemitjava 32 |

Ba ¥+ -~

Design Patterns
ol

Erich Gamma

Richard Helm

5> 1Y Arena 1 * an aytarkic consumer that produces its own food and does not interact with others. E;’h‘ﬁl’v{?:s"':’se“s"
5 [ Exercises 2 . . .
me) 3 public class Hermit extends Consumer implements IFounder |

> = Interface 4

> [2 Simulation 5 private IProductionFunction prodFun;
6 private double workFraction = @.2;
7 o .
8o public Hermit(IAgentIdGenerator id, Endowment end, IUtility utility) { Foreword by Grady Booch
9 super{id, end, utility);
E n ~
1 | ; . ad
28 @override . . .
3 public IFirm considerCreatingFirm(IStatistics statistics, [Innovation research, IAgentIdGe [CITATION] Demgn paﬁerng: elements of reusable Ublect_ﬂnented software

if (this.predFun == null) {
// instead of creating a firm, the hermit will create a preduction function for hi E Gamma - 1995 - PEE[ED“ Edu{:aﬁﬂn |ndia

this.prodFun = research.createProductionFunction(HermitConfiguration.POTATOE);

Cited by 38430 Related articles  All 72 verzsions  Cite Save Maore

return null;
N w

>

- - Prospect theory: An analysis of decision under risk
€, Declaration 57 Search & Consale 313 Call Hierarchy . D Kahneman, A Tversky - Econometrica: Journal of the econometric society, 1979 - J5TOR
- E =4 i} - - " w e _ -
<terminated> Hermit [Java Application] C:\Program FiIes\Java\jdk'I.&O_??'\bin\Java‘:‘v.a:{:e*p?!ﬂ,ia?%;3:1:13%«-1)@| =EE Th 15 paper presents a {:FIT.IQIJE Df expe‘:te'j Utllltf'r ﬂ-‘IE'l':.r‘.'lII as a descnptlue mﬂde' Df dECISIDn

Bob achieved a utility of 4.B24781662782677 on day 96. Inventory before consumption was: [16.32 Man-ho a making under risk and dEUEleE an alternative model called prospect the{]p_.r_ Choices
Bob achieved a utility of 3.9875629195825173 on day 97. Inventory before consumption was: [16.44 Man-h ' .

Bob achieved a utility of 3.9468180543974742 on day 95. Inventory before consumption was: [16.56 Man-h among risky prospects exhibit several pervasive effects that are inconsistent with the basic
Bob achieved a utility of 3.9818234768871824 on day 99. Inventory before consumption was: [16.68 Man-h tenets Df Utilit}l’ theur‘-IIII In pEII'ﬁEI."EIF pE‘DpIE l.IndE‘r‘;f-fE.‘ight outcomes that are ITIEfE.‘h,f prﬂbable
G sl 2 in comparisan with outcomes that are obtained with certainty. This tendency, called the ...
Witable Smartlnsert | 37:1 g Cited by 46464 Related articles  All 103 versions Cite Save

9/20/2018 Agentbased Financial EconomicdS17 23



* An autarkic consumer that produces its own food and does not interact with others. Q@ Comment
E

public class Hermit extends Consumer implements IFounder { 3 Class declaration. Hermit inherits functionality from the

| private TProductionfunction prodfun; Consumer class. The Hermit also implementslttender
private double workFraction = ©.2; interface, aIIowing him to obtain a pl’OdUCtiOﬂ function in
t our simulation even though he does not found a firm (yet).

There is a fielgprodFunz2 ¥  GIRradi&ctioaFunctioh ¢ KA OK | f f 264 GKS
remember his production function. In the beginning, it is empty (null).

There is a private doublprecision number that is initially set to 0.2.
Private means that no other class can access this variable.

The class is public, so anyone can use it.



* An aykarkic consumer that produces its own food and does not interact with others.

3 |

public class Hermit extends Consumer implements IFcunder {

private IProductionFunction prodFun;
private double workFraction = @.2;

public Hermit(IAgentIdGenerator id, Endowment end, IUtility utility) {
super(id, end, utility);

|

The constructor is a special function that is invoked whenever a new Hermit is being instantiated.
Unlike other functions, it has no return value.

}

This constructor does nothing except passing on its parameters to the parent (super) class Consumer,
which needs them.

HoldCtrland clickt & dzLJISNEX 2 NJ &/ 2y adzYSNE FdzZNOIKSNI | 62@S (2
This is the single most important key shortcut to remember!



/t;

* An autarkic consumer that produces its own food and does not interact with others.

w4
public class Hermit extends Consumer implements IFounder {

private IProductionFunction prodFun;
private double workFraction = 0.2;

public Hermit(IAgentIdGenerator id, Endowment end, IUtility utility) {

super(id, end, utility);

}

@0override

public IFirm considerCreatingFirm(IStatistics statfistics, IInnovation research, IAgentIdGenerator id) {

if (this.prodFun == null) {

// instead of creating a firm, the hermit will create a production function for himself
this.prodfun = research.createProductionFunction(HermitConfiguration.POTATOE);

}

return null;

}

| programmed the simulation to ask all
IFounderswvhether they want to found a firm
every day. The Hermit uses this as a hack to .
obtain access to a productivity function. ‘
If you do not know what functionality an object !
offers, enter its name followed by a dot and hit .
cetrl-space & Instant documentation!

research.createProductionFunction (He mi‘th‘:lnf:i.gu ration.POTATOE);

IPriceTake
trade, pra

w())s

wventory in
urs = inve

you Tind

& createProductionFunction(Good desiredOutput) @ IProduc A
¢ createResearchProject{Good desiredQutput) : IResearchPr
@ equals(Object obj) : boolean - Object

@ getClass() : Class<?» - Object

@ hashCode() : int - Object

@ toString() : String - Object

@ notify() : void - Object

@ notifylll]) : void - Object

@ wait() : void - Object

@ wait(long timeout) : void - Object

@ wait(long timeout, int nanos) @ void - Object b4

ion().getle ¢ >
- weighs th

Press 'Ctrl=5pace’ to show Template Proposals

| relative To Each OTHEr:

Returns a simple production function to produce the desired
output or null if no such production functicn is configured.
Parameters:

desiredOutput




@verride

public IFirm considerCreatingFirm(IStatistics statlistics, IInnovation research, IAgentIdGenerator id) {

if (this.prodfFun == null) {

// instead of creating a firm, the hermit will create a production function for himself

this.prodfun = research.createProductionFunction(HermitConfiguration.POTATOE);

}

return null;
}
@0override

public void tradeGoods(IPriceTakerMarket market) {
// Hermit does not trade, produces instead for himself
produce(getInventory());

}

private void produce(Inventory inventory) {
IStock currentManhours = inventory.getStock(HermitConfiguration.MAN_HOUR);

// Play here. Maybe you find a better fraction than 60%?

// getUtilityFunction().getWeights() might help you finding out

// how the consumer weighs the utility of potatoes and of leisure

// time (man-hours) relative to each other.

double plannedLeisureTime = currentManhours.getAmount() * workFraction;
workFraction = workFraction + 0.005;

// The hide function creates allows to hide parts of the inventory from the
// production function, preserving it for later consumption.

The simulation invokes the

dradeGoods Fdzy Ol A2y 2V
consumer every day. However, the
Hermit being a hermit does not trade.
Instead, he produces his own potatoes
feeding his previously obtained
production function with some of his

24 manhours.

Inventory productionInventory = inventory.hide(HermitConfiguration.MAN_HOUR, plannedlLeisureTime);

prodFun.produce(productionInventory);



CAYylftftex GKSNBE A& || GYFLAYyé YSOUK2RO® /fléééé GKFG KIFE@S
¢KS YIAY YSOK2R Aa aqaidldaAoOés YSFEYyAy3a GKFG A0 SEA&GA
¢2 NMzy GKS chhi—O\fW\sO‘[YSuyRRQ RSt SOG & NXzy | éé aWF @k ! LILX A Ol

A Live demo including short tour through the debugger.



