
Agent-based Financial Economics
Lesson 1: The Hermit

Luzius Meisser, Prof. Thorsten Hens

luzius@meissereconomics.com

“What I cannot create, I do not understand.”

- Richard Feynman

9/20/2019 Agent-based Financial Economics - HS17 2

About this course

• All information on http://course.meissereconomics.com

• Every Friday from 14:00 to 15:45 at KOL-F-123

• 14 Lessons, last two for presentations

• We will form teams of two during the break

• Unique setup with custom-made software

• Modelling ideas borrowed from “Economic Foundations of
Finance” by Thorsten Hens and Helga Fehr-Duda, 6 ECTS

9/20/2019 Agent-based Financial Economics - HS17 3

http://course.meissereconomics.com/

Typical lesson structure

• Discussing last week’s exercise

• Famous models

• Theory, methodological background, maths

• Extending our model, what do we expect?

• Next exercise, see what actually happens

9/20/2019 Agent-based Financial Economics - HS17 4

Structure Today

• About this course

• Theory: Chaos and complexity

• Famous model: Shellings segregation game

• Break: forming of teams

• Economic basics: utility and production

• Software engineering: OO, Java, Eclipse, Git

• General setup and first exercise

9/20/2019 Agent-based Financial Economics - HS17 5

About me

• Studied Computer Science at ETH, 2006

• Co-founded and sold secure cloud storage startup

• Board member of Bitcoin Association Switzerland

• Teached object-oriented programming at FHNW

• Studied Economics at UZH, 2016

• Currently pursuing a PhD on “Agent-based financial economics”

• Founded Meisser Economics AG for my research.

• I believe that there is a huge untapped potential of software
engineering in economics and finance.

9/20/2019 Agent-based Financial Economics - HS17 6

Philosophy

• Agent-based vs equation-based

• Local vs global decisions

• Invisible hand vs central planning

• Decentralized vs holistic

• Object-oriented vs data-driven

• Graph vs matrix

• Modular vs monolithic

• Divide et impera vs aggregation

You can always look at a coin from two sides. Nonetheless, it keeps being a coin.

9/20/2019 Agent-based Financial Economics - HS17 7

9/20/2019 Agent-based Financial Economics - HS17 8

Chaos and Complexity

Classic example: discrete logistic growth.

9/20/2019 Agent-based Financial Economics - HS17 9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

Logistic growth with k=1.5, x0 = 0.01

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Equlibrium at crossing point

Chaos and Complexity

Simple systems can exhibit chaotic behavior.

9/20/2019 Agent-based Financial Economics - HS17 10

Classic example: discrete logistic growth

For a model in which prices behave like
this, see: Cars Hommes, «Behavioral
Rationality and Heterogenous Expectations
in Complex Economic Systems», page 14

Chaos and Complexity

9/20/2019 Agent-based Financial Economics - HS17 11

Classic example: logistic map

See also: Cars Hommes, «Behavioral
Rationality and Heterogenous Expectations in
Complex Economic Systems», page 14

→ Systems get chaotic very quickly. In chaotic
systems, small arbitrary assumptions or errors
can make a big difference.
→ Results are worthless without having a
stable, known case as an anchor point.

Chaos and Complexity

9/20/2019 Agent-based Financial Economics - HS17 12

The magnetic pendulum: classic
example of a continuous system that
exhibits complexity.

Multiple equilibria, practically
impossible to tell at which one it will
end up.

→ To avoid chaos, we should prefer
systems in which small errors are not
allowed to add up.

Shellings Segregation Game

• Very simple model, people move and slightly prefer to be
among themselves

• Small bias leads to strong segregation over time

• Chaos: small differences in initial conditions can lead to
completely different outcome

• Economically, segregation is optimal, as it maximizes utility.
Economists take preferences as given, do not judge. (Maybe
they should.)

→Singapore mandates racial mixture of tenants in each block

→San Francisco randomly assigns children to schools across
town (potentially leading to large travel times)

Generally: be careful with political (or any other)
interpretations. Your results might be an artifact of a
programming error, some overlooked detail, or an invalid
assumption.

Online to play with: ncase.me/polygons/

https://ncase.me/polygons/

Break

Forming of teams.

9/20/2019 Agent-based Financial Economics - HS17 14

Our Toy Economy: Basic Setting

• Classic sequence economy with production

• Consumers with utility functions and endowments, trade to
maximize discounted lifetime utility

• Price-taking firms with production functions,
trade to maximize discounted lifetime profits

• On each day, a pareto-efficient equilibrium must exist (first
theorem of welfare economics) and is reachable through trading

• Not clear how to reach it in general (almost “NP hard”)

9/20/2019 Agent-based Financial Economics - HS17 15

Exercise 1: The Hermit
• No trade, lives on his own

• Has to find optimal work-life balance that maximizes utility

• Deadline: next Thursday 24:00

• I will unlock your accounts tonight and notify you by e-mail

→ See ex1.meissereconomics.com

9/20/2019 Agent-based Financial Economics - HS17 16

The Mathematical View

9/20/2019 Agent-based Financial Economics - HS17 17

→ Trivial for the economists among you.

Many ways to solve this

• Exogenous trial and error

• Calculate optimum and hardcode result

• Calculate analytical solution and calculate optimum dynamically from
the current parameters

• Endogenous trial and error

• Golden ratio search

• “Steepest descent”

• Own ideas?

Feel free to do what you feel most comfortable with, but document it!

9/20/2019 Agent-based Financial Economics - HS17 18

Heuristic
What is a heuristic?

A heuristic is a simple recipe to solve a problem well
enough.

Example: 1/n heuristic in investing.

Example: if you don’t want to evaluate all the yoghurts
at Coop, just buy the same as you bought the last time.

Example: Ant routes.

Related: “greedy algorithms” in computer science.

A good heuristic allows an agent to behave successfully
(or even optimally) without spending much resources on
solving the underlying problem, at least most of the
time.

Gerd Gigerenzer is the “heuristics pope”.

9/20/2019 Agent-based Financial Economics - HS17 19

Choice of Tools

• Programming language: Java

• Code editor: Eclipse

• Version control: Git, Github.com, SourceTree

• Documentation: Markdown

Follow the instruction on

http://meissereconomics.com/course/setup

to install all of the above.

9/20/2019 Agent-based Financial Economics - HS17 20

http://meissereconomics.com/course/setup

Object-Oriented Programming

• The most popular way of organizing software

• Well-suited to structure complex systems

• Objects encapsulate concerns, hide complexity

• The definition of what an object does is called “class” (cookie form)

• Instances of a class are called “objects” (cookie)

• Classes have two kinds of members: variables and functions

(sometimes also called field and method)

• These members might or might not be visible to other classes

→ Particularly well-suited for articulating agent-based models

9/20/2019 Agent-based Financial Economics - HS17 21

Class (object definition)

Objects (instances of
a class)

Java

9/20/2019 Agent-based Financial Economics - HS17 22

- Most popular programming language by far. Most popular also for agent-based economics.
- Almost as fast as C/C++, but much fewer ways to shoot your own foot.
- Python is also popular among scientists, but about 10 times slower.
- Good to have on your CV!

Popularity Speed

9/20/2019 Agent-based Financial Economics - HS17 23

- Created by consortium about IBM as a strategic move against Sun Microsystems – hence the name
- Architect is software engineering heavyweight Erich Gamma who lives in Zurich, currently working for Microsoft.
- Invaluable programming tool, supports the programmer in many way. But not very intuitive at first.

 Comment

 Class declaration. Hermit inherits functionality from the
Consumer class. The Hermit also implements the Ifounder
interface, allowing him to obtain a production function in
our simulation even though he does not found a firm (yet).

There is a private double-precision number that is initially set to 0.2.
Private means that no other class can access this variable.

There is a field prodFun of type “IProductionFunction” which allows the Hermit to
remember his production function. In the beginning, it is empty (null).

The class is public, so anyone can use it.

The constructor is a special function that is invoked whenever a new Hermit is being instantiated.
Unlike other functions, it has no return value.

This constructor does nothing except passing on its parameters to the parent (super) class Consumer,
which needs them.

Hold Ctrl and click “super” or “Consumer” further above to directly jump to the Consumer class.
This is the single most important key shortcut to remember!

I programmed the simulation to ask all
IFounders whether they want to found a firm
every day. The Hermit uses this as a hack to
obtain access to a productivity function.

If you do not know what functionality an object
offers, enter its name followed by a dot and hit
“ctrl-space”. → Instant documentation!

The simulation invokes the
“tradeGoods” function on every
consumer every day. However, the
Hermit being a hermit does not trade.
Instead, he produces his own potatoes
feeding his previously obtained
production function with some of his
24 man-hours.

Finally, there is a “main” method. Classes that have a main method can be run.
The main method is “static”, meaning that it exists independently of any specific Hermit instance.
To run the “main” method, right-click and select “run as” “Java Application”.

→ Live demo including short tour through the debugger.

Version Control

9/20/2019 Agent-based Financial Economics - HS17 29

Everything hosted on github.com.
We use the SourceTree client to access it.

Git is a version control system invented by Linus Thorvalds
(the guy who created Linux). Most popular by far, even
Microsoft is using Git to store the source code of Windows.

Git stores a history of all you did in a local database located
in a subfolder “.git”. Nomenclature:

commit: save local changes to the local git database
discard: undo a local change by restoring the previous state
from the local git database
fetch: find out what changes are available for download
pull: download changes
push: upload changes
merge: integrate changes from two different sources

Version Control

9/20/2019 Agent-based Financial Economics - HS17 30

http://meissereconomics.com/course/setup

http://meissereconomics.com/course/setup

Ranking

9/20/2019 Agent-based Financial Economics - HS17 31

Based on an exponential moving average.

Defined in com.agentecon.web.methods.UtilityRanking
In eclipse, hit Ctrl-Shift-T to quickly find classes by name.

Note that the following metrics are equivalent in
expectation as long as the discount rate corresponds to the
probability of death:
• Total life-time utility
• Utility on the last day
• Exponential moving average
But not: average daily utility!!!

Proof in:
https://github.com/meisser/course/blob/master/simulatio
n/documentation/Utility%20Metric.pdf

